Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Exp Neurol ; 365: 114409, 2023 07.
Artículo en Inglés | MEDLINE | ID: covidwho-2291951

RESUMEN

Microphysiological systems (MPS) are 2D or 3D multicellular constructs able to mimic tissue microenvironments. The latest models encompass a range of techniques, including co-culturing of various cell types, utilization of scaffolds and extracellular matrix materials, perfusion systems, 3D culture methods, 3D bioprinting, organ-on-a-chip technology, and examination of tissue structures. Several human brain 3D cultures or brain MPS (BMPS) have emerged in the last decade. These organoids or spheroids are 3D culture systems derived from induced pluripotent cells or embryonic stem cells that contain neuronal and glial populations and recapitulate structural and physiological aspects of the human brain. BMPS have been introduced recently in the study and modeling of neuroinfectious diseases and have proven to be useful in establishing neurotropism of viral infections, cell-pathogen interactions needed for infection, assessing cytopathological effects, genomic and proteomic profiles, and screening therapeutic compounds. Here we review the different methodologies of organoids used in neuroinfectious diseases including spheroids, guided and unguided protocols as well as microglia and blood-brain barrier containing models, their specific applications, and limitations. The review provides an overview of the models existing for specific infections including Zika, Dengue, JC virus, Japanese encephalitis, measles, herpes, SARS-CoV2, and influenza viruses among others, and provide useful concepts in the modeling of disease and antiviral agent screening.


Asunto(s)
COVID-19 , Células Madre Pluripotentes Inducidas , Infección por el Virus Zika , Virus Zika , Humanos , Sistemas Microfisiológicos , Proteómica , ARN Viral , COVID-19/patología , SARS-CoV-2 , Encéfalo , Infección por el Virus Zika/patología , Células Madre Pluripotentes Inducidas/fisiología
2.
Adv Sci (Weinh) ; 9(30): e2203388, 2022 10.
Artículo en Inglés | MEDLINE | ID: covidwho-2013319

RESUMEN

Coronavirus disease 2019 continues to spread worldwide. Given the urgent need for effective treatments, many clinical trials are ongoing through repurposing approved drugs. However, clinical data regarding the cardiotoxicity of these drugs are limited. Human pluripotent stem cell-derived cardiomyocytes (hCMs) represent a powerful tool for assessing drug-induced cardiotoxicity. Here, by using hCMs, it is demonstrated that four antiviral drugs, namely, apilimod, remdesivir, ritonavir, and lopinavir, exhibit cardiotoxicity in terms of inducing cell death, sarcomere disarray, and dysregulation of calcium handling and contraction, at clinically relevant concentrations. Human engineered heart tissue (hEHT) model is used to further evaluate the cardiotoxic effects of these drugs and it is found that they weaken hEHT contractile function. RNA-seq analysis reveals that the expression of genes that regulate cardiomyocyte function, such as sarcomere organization (TNNT2, MYH6) and ion homeostasis (ATP2A2, HCN4), is significantly altered after drug treatments. Using high-throughput screening of approved drugs, it is found that ceftiofur hydrochloride, astaxanthin, and quetiapine fumarate can ameliorate the cardiotoxicity of remdesivir, with astaxanthin being the most prominent one. These results warrant caution and careful monitoring when prescribing these therapies in patients and provide drug candidates to limit remdesivir-induced cardiotoxicity.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , Células Madre Pluripotentes Inducidas , Células Madre Pluripotentes , Humanos , Cardiotoxicidad/etiología , Cardiotoxicidad/metabolismo , Miocitos Cardíacos/metabolismo , Células Madre Pluripotentes Inducidas/fisiología , Calcio/metabolismo , Lopinavir/metabolismo , Lopinavir/farmacología , Ritonavir/metabolismo , Ritonavir/farmacología , Fumarato de Quetiapina/metabolismo , Fumarato de Quetiapina/farmacología , Canales Regulados por Nucleótidos Cíclicos Activados por Hiperpolarización/metabolismo , Células Madre Pluripotentes/metabolismo , Antivirales/efectos adversos
3.
Brain ; 144(12): 3727-3741, 2021 12 31.
Artículo en Inglés | MEDLINE | ID: covidwho-1455243

RESUMEN

Recently, we reported oligoadenylate synthetase 1 (OAS1) contributed to the risk of Alzheimer's disease, by its enrichment in transcriptional networks expressed by microglia. However, the function of OAS1 within microglia was not known. Using genotyping from 1313 individuals with sporadic Alzheimer's disease and 1234 control individuals, we confirm the OAS1 variant, rs1131454, is associated with increased risk for Alzheimer's disease. The same OAS1 locus has been recently associated with severe coronavirus disease 2019 (COVID-19) outcomes, linking risk for both diseases. The single nucleotide polymorphisms rs1131454(A) and rs4766676(T) are associated with Alzheimer's disease, and rs10735079(A) and rs6489867(T) are associated with severe COVID-19, where the risk alleles are linked with decreased OAS1 expression. Analysing single-cell RNA-sequencing data of myeloid cells from Alzheimer's disease and COVID-19 patients, we identify co-expression networks containing interferon (IFN)-responsive genes, including OAS1, which are significantly upregulated with age and both diseases. In human induced pluripotent stem cell-derived microglia with lowered OAS1 expression, we show exaggerated production of TNF-α with IFN-γ stimulation, indicating OAS1 is required to limit the pro-inflammatory response of myeloid cells. Collectively, our data support a link between genetic risk for Alzheimer's disease and susceptibility to critical illness with COVID-19 centred on OAS1, a finding with potential implications for future treatments of Alzheimer's disease and COVID-19, and development of biomarkers to track disease progression.


Asunto(s)
2',5'-Oligoadenilato Sintetasa/genética , Enfermedad de Alzheimer/genética , COVID-19/genética , Ligamiento Genético/genética , Predisposición Genética a la Enfermedad/genética , Gravedad del Paciente , Adolescente , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/diagnóstico , Enfermedad de Alzheimer/epidemiología , COVID-19/diagnóstico , COVID-19/epidemiología , Células Cultivadas , Femenino , Redes Reguladoras de Genes/genética , Predisposición Genética a la Enfermedad/epidemiología , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple/genética , Adulto Joven
4.
Stem Cells Transl Med ; 10(11): 1491-1499, 2021 11.
Artículo en Inglés | MEDLINE | ID: covidwho-1321718

RESUMEN

Experimental cell models are indispensable for clarifying the pathophysiology of coronavirus disease 2019 (COVID-19), which is caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection, and for developing therapeutic agents. To recapitulate the symptoms and drug response of COVID-19 patients in vitro, SARS-CoV-2 studies using physiologically relevant human embryonic stem (ES)/induced pluripotent stem (iPS) cell-derived somatic cells and organoids are ongoing. These cells and organoids have been used to show that SARS-CoV-2 can infect and damage various organs including the lung, heart, brain, intestinal tract, kidney, and pancreas. They are also being used to develop COVID-19 therapeutic agents, including evaluation of their antiviral efficacy and safety. The relationship between COVID-19 aggravation and human genetic backgrounds has been investigated using genetically modified ES/iPS cells and patient-derived iPS cells. This review summarizes the latest results and issues of SARS-CoV-2 research using human ES/iPS cell-derived somatic cells and organoids.


Asunto(s)
COVID-19 , Células Madre Embrionarias Humanas/fisiología , Organoides/fisiología , SARS-CoV-2/fisiología , Investigación Biomédica/métodos , Investigación Biomédica/tendencias , COVID-19/etiología , COVID-19/patología , COVID-19/terapia , Terapia Genética/métodos , Terapia Genética/tendencias , Células Madre Embrionarias Humanas/trasplante , Humanos , Células Madre Pluripotentes Inducidas/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Organoides/citología , Organoides/trasplante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA